arXiv Analytics

Sign in

arXiv:1105.4464 [quant-ph]AbstractReferencesReviewsResources

Quantum correlations with no causal order

Ognyan Oreshkov, Fabio Costa, Caslav Brukner

Published 2011-05-23, updated 2013-02-14Version 3

The idea that events obey a definite causal order is deeply rooted in our understanding of the world and at the basis of the very notion of time. But where does causal order come from, and is it a necessary property of nature? We address these questions from the standpoint of quantum mechanics in a new framework for multipartite correlations which does not assume a pre-defined global causal structure but only the validity of quantum mechanics locally. All known situations that respect causal order, including space-like and time-like separated experiments, are captured by this framework in a unified way. Surprisingly, we find correlations that cannot be understood in terms of definite causal order. These correlations violate a 'causal inequality' that is satisfied by all space-like and time-like correlations. We further show that in a classical limit causal order always arises, which suggests that space-time may emerge from a more fundamental structure in a quantum-to-classical transition.

Comments: 13 pages, 5 figures
Journal: Nature Communications 3, 1092 (2012)
Categories: quant-ph, gr-qc
Related articles: Most relevant | Search more
arXiv:1402.2252 [quant-ph] (Published 2014-02-10, updated 2014-06-29)
A principle of quantumness
arXiv:1101.1958 [quant-ph] (Published 2011-01-10)
What Really Sets the Upper Bound on Quantum Correlations?
arXiv:1302.2731 [quant-ph] (Published 2013-02-12)
Quantum correlations which imply causation