arXiv Analytics

Sign in

arXiv:1006.0930 [math.NT]AbstractReferencesReviewsResources

Non-vanishing of Dirichlet L-functions at the central point

H. M. Bui

Published 2010-06-04, updated 2010-10-01Version 2

Let $\chi$ be a primitive Dirichlet character modulo $q$ and $L(s,\chi)$ be the Dirichlet L-function associated to $\chi$. Using a new two-piece mollifier we show that $L(\tfrac{1}{2},\chi)\ne0$ for at least 34% of the characters in the family.

Comments: 19 pages
Journal: Int. J. Number Theory 8 (2012), 1855-1881
Categories: math.NT
Subjects: 11M26
Related articles: Most relevant | Search more
arXiv:1403.7079 [math.NT] (Published 2014-03-27)
On the non-vanishing of Dirichlet $L$-functions at the central point
arXiv:2409.01457 [math.NT] (Published 2024-09-02)
The sixth moment of Dirichlet L-functions at the central point
arXiv:0803.1870 [math.NT] (Published 2008-03-12, updated 2009-02-17)
Non-vanishing of the symmetric square $L$-function at the central point