arXiv:1005.5222 [math.GR]AbstractReferencesReviewsResources
Degenerations and orbits in finite abelian groups
Kunal Dutta, Amritanshu Prasad
Published 2010-05-28Version 1
A notion of degeneration of elements in groups is introduced. It is used to parametrize the orbits in a finite abelian group under its full automorphism group by a finite distributive lattice. A pictorial description of this lattice leads to an intuitive self-contained exposition of some of the basic facts concerning these orbits, including their enumeration. Given a partition $\lambda$, the lattice parametrizing orbits in a finite abelian p-group of type $\lambda$ is found to be independent of p. The order of the orbit corresponding to each parameter, which turns out to be a polynomial in p, is calculated. The description of orbits is extended to subquotients by certain characteristic subgroups. Each such characteristic subquotient is shown to have a unique maximal orbit.