arXiv:1004.2938 [math.AP]AbstractReferencesReviewsResources
Improved breakdown criterion for Einstein vacuum equations in CMC gauge
Published 2010-04-17Version 1
Let $\M_*=\cup_{t\in [t_0, t_*)} \Sigma_t$ be a part of vacuum globally hyperbolic space-time $(\bM, \bg)$, foliated by constant mean curvature hypersurfaces $\Sigma_t$ with $t_0<t_*<0$. We show that the foliation can be extended beyond $t_*$ if the second fundamental form $k$ and the lapse function $n$ satisfy $$ \int_{t_0}^{t_*}(\|k\|_{L^\infty(\Sigma_t)}+\|\nab \log n\|_{L^\infty(\Sigma_t)}) dt <\infty. $$ This improves the existing breakdown criteria for Einstein vacuum equations.
DOI: 10.1002/cpa.20388
Keywords: einstein vacuum equations, breakdown criterion, cmc gauge, constant mean curvature hypersurfaces, second fundamental form
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1201.0049 [math.AP] (Published 2011-12-30)
Rough solutions of Einstein vacuum equations in CMCSH gauge
arXiv:1912.08478 [math.AP] (Published 2019-12-18)
Naked Singularities for the Einstein Vacuum Equations: The Exterior Solution
arXiv:2003.11763 [math.AP] (Published 2020-03-26)
Quantitative estimates for almost constant mean curvature hypersurfaces