arXiv Analytics

Sign in

arXiv:1002.1437 [hep-ex]AbstractReferencesReviewsResources

Neutrino masses and Neutrinoless Double Beta Decay: Status and expectations

Oliviero Cremonesi

Published 2010-02-07Version 1

Two most outstanding questions are puzzling the world of neutrino Physics: the possible Majorana nature of neutrinos and their absolute mass scale. Direct neutrino mass measurements and neutrinoless double beta decay (0nuDBD) are the present strategy to solve the puzzle. Neutrinoless double beta decay violates lepton number by two units and can occurr only if neutrinos are massive Majorana particles. A positive observation would therefore necessarily imply a new regime of physics beyond the standard model, providing fundamental information on the nature of the neutrinos and on their absolute mass scale. After the observation of neutrino oscillations and given the present knowledge of neutrino masses and mixing parameters, a possibility to observe 0nuDBDD at a neutrino mass scale in the range 10-50 meV could actually exist. This is a real challenge faced by a number of new proposed projects. Present status and future perpectives of neutrinoless double-beta decay experimental searches is reviewed. The most important parameters contributing to the experimental sensitivity are outlined. A short discussion on nuclear matrix element calculations is also given. Complementary measurements to assess the absolute neutrino mass scale (cosmology and single beta decays) are also discussed.

Comments: Presented at the "European Strategy for Future Neutrino Physics" Workshop, CERN October 1-3 2009
Categories: hep-ex
Related articles: Most relevant | Search more
arXiv:0810.3169 [hep-ex] (Published 2008-10-17)
The SuperNEMO Experiment
arXiv:hep-ex/9902027 (Published 1999-02-18, updated 1999-03-10)
News on Neutrino Oscillations and Neutrino Masses
arXiv:1908.10082 [hep-ex] (Published 2019-08-27)
The Exposure-Background Duality in the Searches of Neutrinoless Double Beta Decay