arXiv Analytics

Sign in

arXiv:0906.4142 [math.CO]AbstractReferencesReviewsResources

The maximum number of cliques in a graph embedded in a surface

Vida Dujmović, Gašper Fijavž, Gwenaël Joret, Thom Sulanke, David R. Wood

Published 2009-06-22, updated 2011-03-30Version 3

This paper studies the following question: Given a surface $\Sigma$ and an integer $n$, what is the maximum number of cliques in an $n$-vertex graph embeddable in $\Sigma$? We characterise the extremal graphs for this question, and prove that the answer is between $8(n-\omega)+2^{\omega}$ and $8n+{3/2} 2^{\omega}+o(2^{\omega})$, where $\omega$ is the maximum integer such that the complete graph $K_\omega$ embeds in $\Sigma$. For the surfaces $\mathbb{S}_0$, $\mathbb{S}_1$, $\mathbb{S}_2$, $\mathbb{N}_1$, $\mathbb{N}_2$, $\mathbb{N}_3$ and $\mathbb{N}_4$ we establish an exact answer.

Journal: European J. Combinatorics 32.8:1244-1252, 2011
Categories: math.CO
Subjects: 05C10, 05C35
Related articles: Most relevant | Search more
arXiv:1303.2951 [math.CO] (Published 2013-03-12)
The Erdős-Hajnal conjecture for rainbow triangles
arXiv:1307.6327 [math.CO] (Published 2013-07-24, updated 2014-12-12)
Ramsey for complete graphs with dropped cliques
arXiv:1311.2785 [math.CO] (Published 2013-11-12, updated 2014-05-14)
On the Buratti-Horak-Rosa Conjecture about Hamiltonian Paths in Complete Graphs