arXiv Analytics

Sign in

arXiv:0803.1740 [math.NT]AbstractReferencesReviewsResources

Primes in the form $[αp+β]$

Hongze Li, Hao Pan

Published 2008-03-12, updated 2008-04-05Version 3

Let \beta be a real number. Then for almost all irrational \alpha>0 (in the sense of Lebesgue measure) \limsup_{x\to\infty}\pi_{\alpha,\beta}^*(x)(\log x)^2/x>=1, where \pi_{\alpha,\beta}^*(x)={p<=x: both p and [\alpha p+\beta] are primes}.

Categories: math.NT
Subjects: 11N05, 11N36, 11P32
Related articles: Most relevant | Search more
arXiv:1603.01081 [math.NT] (Published 2016-03-03)
Beta-expansion and continued fraction expansion of real numbers
arXiv:1804.02844 [math.NT] (Published 2018-04-09, updated 2018-09-17)
Normal numbers with digit dependencies
arXiv:0811.1369 [math.NT] (Published 2008-11-09, updated 2009-03-15)
A Thermodynamic Classification of Real Numbers