arXiv Analytics

Sign in

arXiv:0803.0132 [math.NT]AbstractReferencesReviewsResources

On the mean square of the Riemann zeta-function in short intervals

Aleksandar Ivić

Published 2008-03-02, updated 2009-01-15Version 3

It is proved that, for $T^\epsilon\le G = G(T) \le {1\over2}\sqrt{T}$, $$ \int_T^{2T}\Bigl(I_1(t+G)-I_1(t)\Bigr)^2 dt = TG\sum_{j=0}^3a_j\log^j \Bigl({\sqrt{T}\over G}\Bigr) + O_\epsilon(T^{1+\epsilon}+ T^{1/2+\epsilon}G^2) $$ with some explicitly computable constants $a_j (a_3>0)$ where, for a fixed natural number $k$, $$I_k(t,G) = {1\over\sqrt{\pi}}\int_{-\infty}^\infty |\zeta(1/2+it+iu)|^{2k} {\rm e}^{-(u/G)^2} du. $$ The generalizations to the mean square of $I_1(t+U,G) - I_1(t,G)$ over $[T, T+H]$ and the estimation of the mean square of $I_2(t+U,G)-I_2(t,G)$ are also discussed.

Comments: 19 pages
Journal: Publications de l'Institut Math\'ematique 85(99), 2009, 1-17
Categories: math.NT
Subjects: 11M06, 11N37
Related articles: Most relevant | Search more
arXiv:0707.1756 [math.NT] (Published 2007-07-12, updated 2007-11-08)
On the divisor function and the Riemann zeta-function in short intervals
arXiv:math/0611809 [math.NT] (Published 2006-11-27, updated 2007-09-18)
Subconvexity for the Riemann zeta-function and the divisor problem
arXiv:math/0701202 [math.NT] (Published 2007-01-07, updated 2007-01-21)
On the Riemann zeta-function and the divisor problem IV