arXiv:0803.0132 [math.NT]AbstractReferencesReviewsResources
On the mean square of the Riemann zeta-function in short intervals
Published 2008-03-02, updated 2009-01-15Version 3
It is proved that, for $T^\epsilon\le G = G(T) \le {1\over2}\sqrt{T}$, $$ \int_T^{2T}\Bigl(I_1(t+G)-I_1(t)\Bigr)^2 dt = TG\sum_{j=0}^3a_j\log^j \Bigl({\sqrt{T}\over G}\Bigr) + O_\epsilon(T^{1+\epsilon}+ T^{1/2+\epsilon}G^2) $$ with some explicitly computable constants $a_j (a_3>0)$ where, for a fixed natural number $k$, $$I_k(t,G) = {1\over\sqrt{\pi}}\int_{-\infty}^\infty |\zeta(1/2+it+iu)|^{2k} {\rm e}^{-(u/G)^2} du. $$ The generalizations to the mean square of $I_1(t+U,G) - I_1(t,G)$ over $[T, T+H]$ and the estimation of the mean square of $I_2(t+U,G)-I_2(t,G)$ are also discussed.
Comments: 19 pages
Journal: Publications de l'Institut Math\'ematique 85(99), 2009, 1-17
Categories: math.NT
Tags: journal article
Related articles: Most relevant | Search more
On the divisor function and the Riemann zeta-function in short intervals
Subconvexity for the Riemann zeta-function and the divisor problem
On the Riemann zeta-function and the divisor problem IV