arXiv:0802.1020 [hep-th]AbstractReferencesReviewsResources
Constructing Non-Abelian Vortices with Arbitrary Gauge Groups
Minoru Eto, Toshiaki Fujimori, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi, Walter Vinci
Published 2008-02-07, updated 2008-02-15Version 2
We construct the general vortex solution in the fully-Higgsed, color-flavor locked vacuum of a non-Abelian gauge theory, where the gauge group is taken to be the product of an arbitrary simple group and U(1), with a Fayet-Iliopoulos term. The vortex moduli space is determined.
Comments: 10 pages, no figures, v2: minor changes and typos corrected
Journal: Phys.Lett.B669:98-101,2008
Categories: hep-th
Keywords: arbitrary gauge groups, constructing non-abelian vortices, general vortex solution, vortex moduli space, non-abelian gauge theory
Tags: journal article
Related articles: Most relevant | Search more
arXiv:0707.3267 [hep-th] (Published 2007-07-22)
Dynamics of Domain Wall Networks
Computing the θ-exact Seiberg-Witten map for arbitrary gauge groups
arXiv:hep-th/9306066 (Published 1993-06-15)
Relativistic Generalization and Extension to the Non-Abelian Gauge Theory of Feynman's Proof of the Maxwell Equations