arXiv:0707.0560 [cond-mat.stat-mech]AbstractReferencesReviewsResources
Percolation and Loop Statistics in Complex Networks
Published 2007-07-04, updated 2007-08-14Version 2
Complex networks display various types of percolation transitions. We show that the degree distribution and the degree-degree correlation alone are not sufficient to describe diverse percolation critical phenomena. This suggests that a genuine structural correlation is an essential ingredient in characterizing networks. As a signature of the correlation we investigate a scaling behavior in $M_N(h)$, the number of finite loops of size $h$, with respect to a network size $N$. We find that networks, whose degree distributions are not too broad, fall into two classes exhibiting $M_N(h)\sim ({constant})$ and $M_N(h) \sim (\ln N)^\psi$, respectively. This classification coincides with the one according to the percolation critical phenomena.