arXiv Analytics

Sign in

arXiv:0706.0223 [math.CO]AbstractReferencesReviewsResources

Two Erdos problems on lacunary sequences: Chromatic number and Diophantine approximation

Yuval Peres, Wilhelm Schlag

Published 2007-06-01Version 1

Let ${n_k}$ be an increasing lacunary sequence, i.e., $n_{k+1}/n_k>1+r$ for some $r>0$. In 1987, P. Erdos asked for the chromatic number of a graph $G$ on the integers, where two integers $a,b$ are connected by an edge iff their difference $|a-b|$ is in the sequence ${n_k}$. Y. Katznelson found a connection to a Diophantine approximation problem (also due to Erdos): the existence of $x$ in $(0,1)$ such that all the multiples $n_j x$ are at least distance $\delta(x)>0$ from the set of integers. Katznelson bounded the chromatic number of $G$ by $Cr^{-2}|\log r|$. We apply the Lov\'asz local lemma to establish that $\delta(x)>cr|\log r|^{-1}$ for some $x$, which implies that the chromatic number of $G$ is at most $Cr^{-1} |\log r|$. This is sharp up to the logarithmic factor.

Related articles: Most relevant | Search more
arXiv:math/0208072 [math.CO] (Published 2002-08-09, updated 2003-11-24)
Topological lower bounds for the chromatic number: A hierarchy
arXiv:math/0310339 [math.CO] (Published 2003-10-21)
Box complexes, neighborhood complexes, and the chromatic number
arXiv:1408.2002 [math.CO] (Published 2014-08-09)
On the Chromatic Number of $\mathbb{R}^n$ for Small Values of $n$