I will post my reading notes on the topic of Feynman integrals. It serves as supplementary materials for the introduction written by S. Weinzierl [1].
Alpha Reresentation
In this section, we will provide an direct example for Eqs. (2.25) and (2.26) in V.A. Smirnov’s book [2]. Although it is not a strict proof, it helps to understand how Feynman integrals are related to the language of graph theory. For alpha parameters, one starts from the representation
\begin{equation}
\frac{1}{(p_l^2 - m_l^2)^{a_l}} = \frac{(-i)^{a_l}}{\Gamma(a_l)}
\int_0^{\infty}\mathrm{d}\alpha_l \, \alpha_l^{a_l - 1} e^{i(p_l^2-m_l^2) \alpha_l}
\end{equation}
Consider the general form of scalar integral
\begin{equation}
F_{\Gamma} (q_1, \ldots, q_n; d) = \int\mathrm{d}^d k_1 \cdots \int\mathrm{d}^d k_h
\prod_{l=1}^L \frac{1}{(p_l^2 - m_l^2)^{a_l}}
\end{equation}
where the internal momenta $p_l$ of the line $l$ is given by
\begin{equation}
p_l = \sum_{i=1}^h e_{il} k_i + \sum_{i=1}^n d_{il} q_i
\end{equation}
Please refer to the description below Eq. (2.5) for notation conventions. Then we have
\\[
p_l^2 = \sum_{i=1}^h \sum_{j=1}^h e_{il} e_{jl} k_i k_j +
2\sum_{i=1}^h \sum_{j=1}^n e_{il}d_{jl} k_i q_j +
\sum_{i=1}^n \sum_{j=1}^n d_{il} d_{jl} q_i q_j
\\]
For the easy of writing, we introduce the matrices $A$, $B$ and the vector $Q$ as
\begin{equation}
A_{ij} = \sum_{l=1}^L e_{il} e_{jl} \alpha_l, \quad
Q_i = \sum_{l=1}^L \sum_{j=1}^n e_{il} d_{jl} q_j \alpha_l, \quad
B_{ij} = \sum_{l=1}^L d_{il} d_{jl} \alpha_l
\end{equation}
Using the formula for $4h$-dimensional Gauss integrals
\begin{equation}
\begin{split}
& \int\mathrm{d}^d k_1 \cdots \int\mathrm{d}^d k_h \,
\exp\bigg[i\Big(\sum_{i,j}A_{ij} k_i k_j + 2 \sum_i q_i k_i \Big)\bigg] \\
& \qquad = e^{i\pi h(1-d/2)/2} \pi^{hd/2} (\det A)^{-d/2}
\exp \Big({-i} \sum_{i,j}A_{ij}^{-1} q_i q_j\Big)
\end{split}
\end{equation}
we can proceed to combine the above relations as
\begin{equation}
\begin{split}
F_{\Gamma} (q_1, \ldots, q_n; d) & = \prod_{l=1}^L \frac{(-i)^{a_l}}{\Gamma(a_l)}
e^{i\pi h(1-d/2)/2} \pi^{hd/2} \int_0^{\infty}\mathrm{d}\alpha_l \, \alpha_l^{a_l - 1} \\
& \qquad \times (\det A)^{-d/2} \exp\Big({-i}QA^{-1}Q^{\mathrm{T}} +
i qBq^{\mathrm{T}} - i \sum_{l=1}^L m_l^2\alpha_l \Big)
\end{split}
\end{equation}
Let us take the two-loop Feynman diagram in Fig. 1 as an example, where $n=1$, $h=2$ and $L=5$:
According to the definition of $A_{ij}$, they are given by
\\[
A_{11} = \alpha_1 + \alpha_2 + \alpha_5, \quad
A_{12} = A_{21} = -\alpha_5, \quad
A_{22} = \alpha_3 + \alpha_4 + \alpha_5
\\]
It is easy to obtain that
\\[
\det A = (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)\alpha_5 +
(\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4)
\\]
This is exactly the same with $\mathcal{U}$ in Eq. (3.45). For $Q$ and $B$, we have
\\[
Q_1 = \alpha_1 q, \quad
Q_2 = \alpha_3 q, \quad
B = \alpha_1 + \alpha_3
\\]
With the expression of $\mathcal{V}$ in Eq. (3.46), we can verify that
\\[
QA^{-1}Q^{\mathrm{T}} - qBq^{\mathrm{T}} = -\mathcal{V} / \mathcal{U}
\\]
References
[1] Stefan Weinzierl, Introduction to Feynman Integrals. arXiv:1005.1855 [hep-ph].
[2] Vladimir A. Smirnov, Analytic Tools for Feynman Integrals. Springer Tracts in Modern Physics, 250 (2012). DOI:10.1007/978-3-642-34886-0.