{ "id": "quant-ph/0508205", "version": "v2", "published": "2005-08-27T06:06:38.000Z", "updated": "2005-09-08T12:42:53.000Z", "title": "Quantum Algorithms for Matching and Network Flows", "authors": [ "Andris Ambainis", "Robert Spalek" ], "comment": "13 pages, v2: added an Omega(n^2) lower bound for network flows", "categories": [ "quant-ph" ], "abstract": "We present quantum algorithms for the following graph problems: finding a maximal bipartite matching in time O(n sqrt{m+n} log n), finding a maximal non-bipartite matching in time O(n^2 (sqrt{m/n} + log n) log n), and finding a maximal flow in an integer network in time O(min(n^{7/6} sqrt m * U^{1/3}, sqrt{n U} m) log n), where n is the number of vertices, m is the number of edges, and U <= n^{1/4} is an upper bound on the capacity of an edge.", "revisions": [ { "version": "v2", "updated": "2005-09-08T12:42:53.000Z" } ], "analyses": { "keywords": [ "quantum algorithms", "network flows", "upper bound", "maximal flow", "graph problems" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005quant.ph..8205A" } } }