{ "id": "nucl-th/0609061", "version": "v1", "published": "2006-09-21T09:19:09.000Z", "updated": "2006-09-21T09:19:09.000Z", "title": "Covariant response theory beyond RPA and its application", "authors": [ "E. Litvinova", "P. Ring", "V. Tselyaev" ], "comment": "12 pages, 4 figures, Proceedings of the NSRT06 Conference", "journal": "Phys.Atom.Nucl.70:1380-1385,2007", "doi": "10.1134/S1063778807080108", "categories": [ "nucl-th" ], "abstract": "The covariant particle-vibration coupling model within the time blocking approximation is employed to supplement the Relativistic Random Phase Approximation (RRPA) with coupling to collective vibrations. The Bethe-Salpeter equation in the particle-hole channel with an energy dependent residual particle-hole (p-h) interaction is formulated and solved in the shell-model Dirac basis as well as in the momentum space. The same set of the coupling constants generates the Dirac-Hartree single-particle spectrum, the static part of the residual p-h interaction and the particle-phonon coupling amplitudes. This approach is applied to quantitative description of damping phenomenon in even-even spherical nuclei with closed shells $^{208}$Pb and $^{132}$Sn. Since the phonon coupling enriches the RRPA spectrum with a multitude of ph$\\otimes$phonon states a noticeable fragmentation of giant monopole and dipole resonances is obtained in the examined nuclei. The results are compared with experimental data and with results of the non-relativistic approach.", "revisions": [ { "version": "v1", "updated": "2006-09-21T09:19:09.000Z" } ], "analyses": { "subjects": [ "24.10.Cn", "21.10.-k", "21.60.Jz", "24.30.Gz", "21.30.Fe", "21.60.-n" ], "keywords": [ "covariant response theory", "application", "relativistic random phase approximation", "energy dependent residual particle-hole", "covariant particle-vibration coupling model" ], "tags": [ "conference paper", "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "inspire": 726721 } } }