{ "id": "nucl-th/0401038", "version": "v1", "published": "2004-01-20T07:19:27.000Z", "updated": "2004-01-20T07:19:27.000Z", "title": "Random interactions in nuclei and extension of $0^+$ dominance in ground states to irreps of group symmetries", "authors": [ "V. K. B. Kota" ], "comment": "8 pages, 1 figure", "journal": "High Energy Physics and Nucler Physics (Chinese) 28 (2004) 1307-1312", "categories": [ "nucl-th" ], "abstract": "Random one plus two-body hamiltonians invariant with respect to $O({\\cal N}_1) \\oplus O({\\cal N}_2)$ symmetry in the group-subgroup chains $U({\\cal N}) \\supset U({\\cal N}_1) \\oplus U({\\cal N}_2) \\supset O({\\cal N}_1) \\oplus O({\\cal N}_2)$ and $U({\\cal N}) \\supset O({\\cal N}) \\supset O({\\cal N}_1) \\oplus O({\\cal N}_2)$ chains of a variety of interacting boson models are used to investigate the probability of occurrence of a given $(\\omega_1 \\omega_2)$ irreducible representation (irrep) to be the ground state in even-even nuclei; $[\\omega_1]$ and $[\\omega_2]$ are symmetric irreps of $O({\\cal N}_1)$ and $O({\\cal N}_2)$ respectively. Numerical results obtained for ${\\cal N}_1 \\geq 3, {\\cal N}_2=1$ and ${\\cal N}_1, {\\cal N}_2 \\geq 3$ situations are well explained by an extended Hartree-Bose mean-field analysis.", "revisions": [ { "version": "v1", "updated": "2004-01-20T07:19:27.000Z" } ], "analyses": { "keywords": [ "ground state", "random interactions", "group symmetries", "plus two-body hamiltonians invariant", "extended hartree-bose mean-field analysis" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "inspire": 643013, "adsabs": "2004nucl.th...1038K" } } }