{ "id": "nucl-th/0008053", "version": "v1", "published": "2000-08-27T20:23:55.000Z", "updated": "2000-08-27T20:23:55.000Z", "title": "The Effect of Deformation on the Twist Mode", "authors": [ "Shadow J. Q. Robinson", "Larry Zamick" ], "comment": "9 pages", "journal": "Nucl.Phys. A690 (2001) 314-317", "doi": "10.1016/S0375-9474(01)00966-6", "categories": [ "nucl-th" ], "abstract": "Using $^{12}$C as an example of a strongly deformed nucleus we calculate the strengths and energies in the asymptotic (oblate) deformed limit for the isovector twist mode operator $[rY^{1}\\vec{l}]^{\\lambda=2}t_{+}$ where l is the orbital angular momentum. We also consider the $\\lambda =1$ case. For $\\lambda=0$, the operator vanishes. Whereas in a $\\Delta N=0$ Nilsson model the summed strength is independent of the relative P$_{3/2}$ and P$_{1/2}$ occupancy when we allow for different frequencies $\\omega_{i}$ in the x, y, and z directions there is a weak dependency on deformation.", "revisions": [ { "version": "v1", "updated": "2000-08-27T20:23:55.000Z" } ], "analyses": { "keywords": [ "deformation", "isovector twist mode operator", "orbital angular momentum", "weak dependency", "operator vanishes" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Nucl. Phys. A" }, "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "inspire": 532514 } } }