{ "id": "math/9907018", "version": "v2", "published": "1999-07-02T14:51:37.000Z", "updated": "2001-06-08T20:18:15.000Z", "title": "Canonical heights on elliptic curves in characteristic p", "authors": [ "Matthew A. Papanikolas" ], "comment": "14 pages; final version", "journal": "Compositio Math. 122 (2000), 299-313", "categories": [ "math.NT", "math.AG" ], "abstract": "We define a new canonical height pairing on the rational points of elliptic curves over global function fields which takes values in the multiplicative group of a completion of the function field. This height serves as an analogue of both the classical Neron-Tate height and analytic p-adic heights. Our main result is that under some general hypotheses this pairing is non-degenerate.", "revisions": [ { "version": "v2", "updated": "2001-06-08T20:18:15.000Z" } ], "analyses": { "subjects": [ "11G05", "11G07", "11R58", "14G25" ], "keywords": [ "elliptic curves", "canonical height", "characteristic", "analytic p-adic heights", "global function fields" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......7018P" } } }