{ "id": "math/9809183", "version": "v1", "published": "1998-09-30T08:36:56.000Z", "updated": "1998-09-30T08:36:56.000Z", "title": "Scattering Theory in the Energy Space for a Class of Hartree Equations", "authors": [ "J. Ginibre", "G. Velo" ], "comment": "TeX, 41 pages, available http://qcd.th.u-psud.fr", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We study the theory of scattering in the energy space for the Hartree equation in space dimension n>2. Using the method of Morawetz and Strauss, we prove in particular asymptotic completeness for radial nonnegative nonincreasing potentials satisfying suitable regularity properties at the origin and suitable decay properties at infinity. The results cover in particular the case of the potential |x|^(- gamma) for 2 < gamma < Min(4,n).", "revisions": [ { "version": "v1", "updated": "1998-09-30T08:36:56.000Z" } ], "analyses": { "subjects": [ "35P25", "35B40", "35Q40", "81U99" ], "keywords": [ "energy space", "hartree equation", "scattering theory", "nonnegative nonincreasing potentials satisfying", "nonincreasing potentials satisfying suitable" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......9183G" } } }