{ "id": "math/9809108", "version": "v1", "published": "1998-09-19T04:10:59.000Z", "updated": "1998-09-19T04:10:59.000Z", "title": "Quasi-isometric rigidity for PSL(2,Z[1/p])", "authors": [ "Jennifer Taback" ], "comment": "29 pages, 4 figures, LaTeX, epsfig", "categories": [ "math.GR", "math.GT" ], "abstract": "We prove that PSL(2,Z[1/p]) gives the first example of groups which are not quasi-isometric to each other but have the same quasi-isometry group. Namely, PSL(2,Z[1/p]) and PSL(2,Z[1/q]) are not quasi-isometric unless p=q, and, independent of p, the quasi-isometry group of PSL(2,Z[1/p]) is PSL(2,Q). In addition, we characterize PSL(2,Z[1/p]) uniquely among all finitely generated groups by its quasi-isometry type.", "revisions": [ { "version": "v1", "updated": "1998-09-19T04:10:59.000Z" } ], "analyses": { "subjects": [ "20F32" ], "keywords": [ "quasi-isometric rigidity", "quasi-isometry group", "first example", "quasi-isometry type" ], "note": { "typesetting": "LaTeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......9108T" } } }