{ "id": "math/0701726", "version": "v1", "published": "2007-01-25T04:51:35.000Z", "updated": "2007-01-25T04:51:35.000Z", "title": "The zeros of the derivative of the Riemann zeta function near the critical line", "authors": [ "Haseo Ki" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "We study the horizontal distribution of zeros of $\\zeta'(s)$ which are denoted as $\\rho'=\\beta'+i\\gamma'$. We assume the Riemann hypothesis which implies $\\beta'\\geqslant1/2$ for any non-real zero $\\rho'$, equality being possible only at a multiple zero of $\\zeta(s)$. In this paper we prove that $\\liminf(\\beta'-1/2)\\log\\gamma'\\not=0$ if and only if for any $c>0$ and $s=\\sigma+it$ with $|\\sigma-1/2|0$ and $s=\\sigma+it$ ($t\\geqslant10$), we have $$ \\log\\zeta(s)=O(\\frac{(\\log t)^{2-2\\sigma}}{\\log\\log t}) $$ uniformly for $1/2+c/\\log t\\leqslant\\sigma\\leqslant\\sigma_1<1$.", "revisions": [ { "version": "v1", "updated": "2007-01-25T04:51:35.000Z" } ], "analyses": { "subjects": [ "11M26", "11M06" ], "keywords": [ "riemann zeta function", "critical line", "horizontal distribution", "derivative", "riemann hypothesis" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1726K" } } }