{ "id": "math/0701093", "version": "v3", "published": "2007-01-03T13:54:33.000Z", "updated": "2007-01-05T15:22:22.000Z", "title": "The density of integral points on complete intersections", "authors": [ "Oscar Marmon" ], "comment": "24 pages, Appendix by Per Salberger; typos corrected", "journal": "Q. J. Math. 59 (2008), 29-53.", "categories": [ "math.NT", "math.AG" ], "abstract": "In this paper, an upper bound for the number of integral points of bounded height on an affine complete intersection defined over $\\mathbb{Z}$ is proven. The proof uses an extension to complete intersections of the method used for hypersurfaces by Heath-Brown, the so called q-analogue of van der Corput's AB process.", "revisions": [ { "version": "v3", "updated": "2007-01-05T15:22:22.000Z" } ], "analyses": { "subjects": [ "11G35", "11D72" ], "keywords": [ "integral points", "van der corputs ab process", "upper bound", "affine complete intersection" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007math......1093M" } } }