{ "id": "math/0612439", "version": "v4", "published": "2006-12-15T12:32:11.000Z", "updated": "2007-01-05T04:23:39.000Z", "title": "Sublattices of finite index", "authors": [ "Chunlei Liu" ], "comment": "Revised on Jan. 5, 2007", "categories": [ "math.NT" ], "abstract": "Assuming the Gowers Inverse conjecture and the M\\\"{o}bius conjecture for the finite parameter $s$, Green-Tao verified Dickson's conjecture for lattices which are ranges of linear maps of complexity at most $s$. In this paper, we reformulate Green-Tao's theorem on Dickson's conjecture, and prove that, if $L$ is the range of a linear map of complexity $s$, and $L_1$ is a sublattice of $L$ of finite index, then $L_1$ is the range of a linear map of complexity $s$.", "revisions": [ { "version": "v4", "updated": "2007-01-05T04:23:39.000Z" } ], "analyses": { "subjects": [ "11P32" ], "keywords": [ "finite index", "linear map", "sublattice", "gowers inverse conjecture", "green-tao verified dicksons conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math.....12439L" } } }