{ "id": "math/0601271", "version": "v2", "published": "2006-01-12T02:46:37.000Z", "updated": "2006-07-22T17:52:54.000Z", "title": "Twisted conjugacy and quasi-isometry invariance for generalized solvable Baumslag-Solitar groups", "authors": [ "Jennifer Taback", "Peter Wong" ], "journal": "J. Lond. Math. Soc. (2) 75 (2007), no. 3, 705--717", "categories": [ "math.GR", "math.GT" ], "abstract": "We say that a group has property $R_{\\infty}$ if any group automorphism has an infinite number of twisted conjugacy classes. Fel'shtyn and Goncalves prove that the solvable Baumslag-Solitar groups BS(1,m) have property $R_{\\infty}$. We define a solvable generalization $\\Gamma(S)$ of these groups which we show to have property $R_{\\infty}$. We then show that property $R_{\\infty}$ is geometric for these groups, that is, any group quasi-isometric to $\\Gamma(S)$ has property $R_{\\infty}$ as well.", "revisions": [ { "version": "v2", "updated": "2006-07-22T17:52:54.000Z" } ], "analyses": { "subjects": [ "20E45", "20E08", "20F65" ], "keywords": [ "generalized solvable baumslag-solitar groups", "quasi-isometry invariance", "solvable baumslag-solitar groups bs", "infinite number", "twisted conjugacy classes" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2006math......1271T" } } }