{ "id": "math/0511092", "version": "v1", "published": "2005-11-03T17:04:05.000Z", "updated": "2005-11-03T17:04:05.000Z", "title": "A note on S(T) and the zeros of the Riemann zeta-function", "authors": [ "D. A. Goldston", "S. M. Gonek" ], "comment": "5 pages", "categories": [ "math.NT" ], "abstract": "Let $\\pi S(t)$ denote the argument of the Riemann zeta-function at the point $\\frac12+it$. Assuming the Riemann Hypothesis, we sharpen the constant in the best currently known bounds for $S(t)$ and for the change of $S(t)$ in intervals. We then deduce estimates for the largest multiplicity of a zero of the zeta-function and for the largest gap between the zeros.", "revisions": [ { "version": "v1", "updated": "2005-11-03T17:04:05.000Z" } ], "analyses": { "subjects": [ "11M26" ], "keywords": [ "riemann zeta-function", "riemann hypothesis", "deduce estimates", "largest multiplicity", "largest gap" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....11092G" } } }