{ "id": "math/0510076", "version": "v1", "published": "2005-10-04T13:11:43.000Z", "updated": "2005-10-04T13:11:43.000Z", "title": "Inverse problems for parabolic equations 2", "authors": [ "A. G. Ramm" ], "categories": [ "math.AP" ], "abstract": "Let $u_t-u_{xx}=h(t)$ in $0\\leq x \\leq \\pi, t\\geq 0.$ Assume that $u(0,t)=v(t)$, $u(\\pi,t)=0$, and $u(x,0)=g(t)$. The problem is: {\\it what extra data determine the three unknown functions $\\{h, v, g\\}$ uniquely?}. This question is answered and an analytical method for recovery of the above three functions is proposed.", "revisions": [ { "version": "v1", "updated": "2005-10-04T13:11:43.000Z" } ], "analyses": { "subjects": [ "35K20", "35R30" ], "keywords": [ "parabolic equations", "inverse problems", "extra data determine", "unknown functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math.....10076R" } } }