{ "id": "math/0509529", "version": "v1", "published": "2005-09-22T18:52:09.000Z", "updated": "2005-09-22T18:52:09.000Z", "title": "Degenerations of del Pezzo surfaces I", "authors": [ "Paul Hacking", "Yuri Prokhorov" ], "comment": "14 pages", "categories": [ "math.AG" ], "abstract": "Let X be a surface with quotient singularities which admits a smoothing to the plane. We prove that X is a deformation of a weighted projective plane P(a^2,b^2,c^2), where a,b,c is a solution of the Markov equation a^2+b^2+c^2=3abc. We also prove a generalisation for del Pezzo surfaces of degree K^2 at least 5.", "revisions": [ { "version": "v1", "updated": "2005-09-22T18:52:09.000Z" } ], "analyses": { "subjects": [ "14J10", "14E30" ], "keywords": [ "del pezzo surfaces", "degenerations", "quotient singularities", "markov equation", "deformation" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......9529H" } } }