{ "id": "math/0508321", "version": "v1", "published": "2005-08-17T12:17:29.000Z", "updated": "2005-08-17T12:17:29.000Z", "title": "Uniformly exponential growth and mapping class groups of surfaces", "authors": [ "James W. Anderson", "Javier Aramayona", "Kenneth J. Shackleton" ], "comment": "6 pages, no figures", "categories": [ "math.GR", "math.GT" ], "abstract": "We show that the mapping class group of an orientable finite type surface has uniformly exponential growth, as well as various closely related groups. This provides further evidence that mapping class groups may be linear.", "revisions": [ { "version": "v1", "updated": "2005-08-17T12:17:29.000Z" } ], "analyses": { "subjects": [ "20F65", "20F38" ], "keywords": [ "mapping class group", "uniformly exponential growth", "orientable finite type surface", "closely related groups" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......8321A" } } }