{ "id": "math/0505364", "version": "v1", "published": "2005-05-17T21:07:47.000Z", "updated": "2005-05-17T21:07:47.000Z", "title": "Fields of Definition of Rational Points on Varieties", "authors": [ "Jordan Rizov" ], "comment": "6 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $X$ be a scheme over a field $K$ and let $M_X$ be the intersection of all subfields $L$ of $\\bar K$ such that $X$ has a $L$-valued point. In this note we prove that for a variety $X$ over a field $K$ finitely generated over its prime field one has that $M_X = K$", "revisions": [ { "version": "v1", "updated": "2005-05-17T21:07:47.000Z" } ], "analyses": { "subjects": [ "14G05", "11G25", "11G35" ], "keywords": [ "rational points", "definition", "prime field" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2005math......5364R" } } }