{ "id": "math/0411356", "version": "v1", "published": "2004-11-16T20:56:19.000Z", "updated": "2004-11-16T20:56:19.000Z", "title": "Characterization and enumeration of toroidal K_{3,3}-subdivision-free graphs", "authors": [ "Andrei Gagarin", "Gilbert Labelle", "Pierre Leroux" ], "comment": "18 pages, 7 figures and 4 tables", "journal": "Discrete Math. 307 (2007), no. 23, pp. 2993-3005", "doi": "10.1016/j.disc.2007.03.083", "categories": [ "math.CO", "cs.DM" ], "abstract": "We describe the structure of 2-connected non-planar toroidal graphs with no K_{3,3}-subdivisions, using an appropriate substitution of planar networks into the edges of certain graphs called toroidal cores. The structural result is based on a refinement of the algorithmic results for graphs containing a fixed K_5-subdivision in [A. Gagarin and W. Kocay, \"Embedding graphs containing K_5-subdivisions'', Ars Combin. 64 (2002), 33-49]. It allows to recognize these graphs in linear-time and makes possible to enumerate labelled 2-connected toroidal graphs containing no K_{3,3}-subdivisions and having minimum vertex degree two or three by using an approach similar to [A. Gagarin, G. Labelle, and P. Leroux, \"Counting labelled projective-planar graphs without a K_{3,3}-subdivision\", submitted, arXiv:math.CO/0406140, (2004)].", "revisions": [ { "version": "v1", "updated": "2004-11-16T20:56:19.000Z" } ], "analyses": { "subjects": [ "05C30", "05C10", "68R10" ], "keywords": [ "characterization", "enumeration", "graphs containing", "non-planar toroidal graphs", "minimum vertex degree" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....11356G" } } }