{ "id": "math/0411076", "version": "v1", "published": "2004-11-03T22:13:56.000Z", "updated": "2004-11-03T22:13:56.000Z", "title": "A simple proof of a theorem of Karrass and Solitar", "authors": [ "Delaram Kahrobaei" ], "comment": "2 pages. to appear", "categories": [ "math.GR" ], "abstract": "In this note we give a particularly short and simple proof of the following theorem of Karrass and Solitar. Let $H$ be a finitely generated subgroup of a free group $F$ with infinite index $[F:H]$. Then there is a nontrivial normal subgroup $N$ of $F$ such that $N\\cap H = \\{1\\}$.", "revisions": [ { "version": "v1", "updated": "2004-11-03T22:13:56.000Z" } ], "analyses": { "subjects": [ "20E05" ], "keywords": [ "simple proof", "nontrivial normal subgroup", "infinite index", "free group", "finitely generated subgroup" ], "note": { "typesetting": "TeX", "pages": 2, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....11076K" } } }