{ "id": "math/0410452", "version": "v2", "published": "2004-10-20T21:19:14.000Z", "updated": "2005-03-01T19:22:04.000Z", "title": "Existence of a solution to a nonlinear equation", "authors": [ "A. G. Ramm" ], "categories": [ "math.AP" ], "abstract": "Equation $(-\\Delta+k^2)u+f(u)=0$ in $D$, $u\\mid_{\\partial D}=0$, where $k=\\const>0$ and $D\\subset\\R^3$ is a bounded domain, has a solution if $f:\\R\\to\\R$ is a continuous function in the region $|u|\\geq a$, piecewise-continuous in the region $|u|\\leq a$, with finitely many discontinuity points $u_j$ such that $f(u_j\\pm 0)$ exist, and $uf(y)\\geq 0$ for $|u|\\geq a$, where $a\\geq 0$ is an arbitrary fixed number.", "revisions": [ { "version": "v2", "updated": "2005-03-01T19:22:04.000Z" } ], "analyses": { "subjects": [ "35J65" ], "keywords": [ "nonlinear equation", "discontinuity points", "arbitrary fixed number", "bounded domain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math.....10452R" } } }