{ "id": "math/0409372", "version": "v2", "published": "2004-09-20T23:59:34.000Z", "updated": "2004-12-04T23:04:29.000Z", "title": "L-Functions for Symmetric Products of Kloosterman Sums", "authors": [ "Lei Fu", "Daqing Wan" ], "comment": "25 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "The classical Kloosterman sums give rise to a Galois representation of the function field unramfied outside 0 and $\\infty$. We study the local monodromy of this representation at $\\infty$ using $l$-adic method based on the work of Deligne and Katz. As an application, we determine the degrees and the bad factors of the $L$-functions of the symmetric products of the above representation. Our results generalize some results of Robba obtained through $p$-adic method.", "revisions": [ { "version": "v2", "updated": "2004-12-04T23:04:29.000Z" } ], "analyses": { "subjects": [ "11L05", "14F20" ], "keywords": [ "symmetric products", "l-functions", "adic method", "function field unramfied outside", "classical kloosterman sums" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......9372F" } } }