{ "id": "math/0404142", "version": "v1", "published": "2004-04-06T21:03:11.000Z", "updated": "2004-04-06T21:03:11.000Z", "title": "Improved bounds for the crossing numbers of K_m,n and K_n", "authors": [ "E. de Klerk", "J. Maharry", "D. V. Pasechnik", "R. B. Richter", "G. Salazar" ], "comment": "LaTeX, 18 pages, 2 figures", "journal": "SIAM J. Discr. Math. 20(2006), 189--202", "doi": "10.1137/S0895480104442741", "categories": [ "math.CO", "math.OC" ], "abstract": "It has been long--conjectured that the crossing number cr(K_m,n) of the complete bipartite graph K_m,n equals the Zarankiewicz Number Z(m,n):= floor((m-1)/2) floor(m/2) floor((n-1)/2) floor(n/2). Another long--standing conjecture states that the crossing number cr(K_n) of the complete graph K_n equals Z(n):= floor(n/2) floor((n-1)/2) floor((n-2)/2) floor((n-3)/2)/4. In this paper we show the following improved bounds on the asymptotic ratios of these crossing numbers and their conjectured values: (i) for each fixed m >= 9, lim_{n->infty} cr(K_m,n)/Z(m,n) >= 0.83m/(m-1); (ii) lim_{n->infty} cr(K_n,n)/Z(n,n) >= 0.83; and (iii) lim_{n->infty} cr(K_n)/Z(n) >= 0.83. The previous best known lower bounds were 0.8m/(m-1), 0.8, and 0.8, respectively. These improved bounds are obtained as a consequence of the new bound cr(K_{7,n}) >= 2.1796n^2 - 4.5n. To obtain this improved lower bound for cr(K_{7,n}), we use some elementary topological facts on drawings of K_{2,7} to set up a quadratic program on 6! variables whose minimum p satisfies cr(K_{7,n}) >= (p/2)n^2 - 4.5n, and then use state--of--the--art quadratic optimization techniques combined with a bit of invariant theory of permutation groups to show that p >= 4.3593.", "revisions": [ { "version": "v1", "updated": "2004-04-06T21:03:11.000Z" } ], "analyses": { "subjects": [ "05C10", "05C62", "90C22", "90C25", "57M15", "68R10" ], "keywords": [ "crossing number", "state-of-the-art quadratic optimization techniques", "lower bound", "complete bipartite graph", "invariant theory" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......4142D" } } }