{ "id": "math/0403262", "version": "v2", "published": "2004-03-16T13:56:22.000Z", "updated": "2004-03-24T13:07:49.000Z", "title": "The Number of Convex Polyominoes and the Generating Function of Jacobi Polynomials", "authors": [ "Victor J. W. Guo", "Jiang Zeng" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "Lin and Chang gave a generating function of convex polyominoes with an $m+1$ by $n+1$ minimal bounding rectangle. Gessel showed that their result implies that the number of such polyominoes is $$ \\frac{m+n+mn}{m+n}{2m+2n\\choose 2m}-\\frac{2mn}{m+n}{m+n\\choose m}^2. $$ We show that this result can be derived from some binomial coefficients identities related to the generating function of Jacobi polynomials.", "revisions": [ { "version": "v2", "updated": "2004-03-24T13:07:49.000Z" } ], "analyses": { "subjects": [ "05A15", "05A19" ], "keywords": [ "generating function", "convex polyominoes", "jacobi polynomials", "binomial coefficients identities", "chang gave" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004math......3262G" } } }