{ "id": "math/0212366", "version": "v1", "published": "2002-12-29T03:59:58.000Z", "updated": "2002-12-29T03:59:58.000Z", "title": "Finiteness Properties of S-Arithmetic Groups - a Survey", "authors": [ "Kai-Uwe Bux" ], "comment": "28 pages, 5 figures", "categories": [ "math.GR", "math.GT" ], "abstract": "We give an overview about finiteness properties of soluble S-arithmetic groups. Both, the number field case and the function field case are covered. The main result is: If B is a Borel subgroup in a Chevalley group and R is an S-arithmetic ring, then the group B(R) has finiteness length |S|-1 in the function field case, and infinite finiteness length in the number field case.", "revisions": [ { "version": "v1", "updated": "2002-12-29T03:59:58.000Z" } ], "analyses": { "subjects": [ "20G30", "20F65" ], "keywords": [ "finiteness properties", "function field case", "number field case", "infinite finiteness length", "soluble s-arithmetic groups" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math.....12366B" } } }