{ "id": "math/0212365", "version": "v2", "published": "2002-12-29T01:34:59.000Z", "updated": "2004-04-21T20:16:32.000Z", "title": "Finiteness properties of soluble arithmetic groups over global function fields", "authors": [ "Kai-Uwe Bux" ], "comment": "Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol8/paper15.abs.html", "journal": "Geom. Topol. 8(2004) 611-644", "categories": [ "math.GR", "math.GT" ], "abstract": "Let G be a Chevalley group scheme and B<=G a Borel subgroup scheme, both defined over Z. Let K be a global function field, S be a finite non-empty set of places over K, and O_S be the corresponding S-arithmetic ring. Then, the S-arithmetic group B(O_S) is of type F_{|S|-1} but not of type FP_{|S|}. Moreover one can derive lower and upper bounds for the geometric invariants \\Sigma^m(B(O_S)). These are sharp if G has rank 1. For higher ranks, the estimates imply that normal subgroups of B(O_S) with abelian quotients, generically, satisfy strong finiteness conditions.", "revisions": [ { "version": "v2", "updated": "2004-04-21T20:16:32.000Z" } ], "analyses": { "subjects": [ "20G30", "20F65" ], "keywords": [ "global function field", "soluble arithmetic groups", "finiteness properties", "satisfy strong finiteness conditions", "chevalley group scheme" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }