{ "id": "math/0211315", "version": "v1", "published": "2002-11-20T11:23:51.000Z", "updated": "2002-11-20T11:23:51.000Z", "title": "On the distribution of the of Frobenius elements on elliptic curves over function fields", "authors": [ "Amilcar Pacheco" ], "comment": "8 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $C$ be a smooth projective curve over $\\mathbb{F}_q$ with function field $K$, $E/K$ a nonconstant elliptic curve and $\\phi:\\mathcal{E}\\to C$ its minimal regular model. For each $P\\in C$ such that $E$ has good reduction at $P$, i.e., the fiber $\\mathcal{E}_P=\\phi^{-1}(P)$ is smooth, the eigenvalues of the zeta-function of $\\mathcal{E}_P$ over the residue field $\\kappa_P$ of $P$ are of the form $q_P^{1/2}e^{i\\theta_P},q_{P}e^{-i\\theta_P}$, where $q_P=q^{\\deg(P)}$ and $0\\le\\theta_P\\le\\pi$. The goal of this note is to determine given an integer $B\\ge 1$, $\\alpha,\\beta\\in[0,\\pi]$ the number of $P\\in C$ where the reduction of $E$ is good and such that $\\deg(P)\\le B$ and $\\alpha\\le\\theta_P\\le\\beta$.", "revisions": [ { "version": "v1", "updated": "2002-11-20T11:23:51.000Z" } ], "analyses": { "keywords": [ "function field", "frobenius elements", "distribution", "nonconstant elliptic curve", "minimal regular model" ], "tags": [ "journal article" ], "publication": { "doi": "10.4064/aa106-3-4", "journal": "Acta Arithmetica", "year": 2003, "volume": 106, "number": 3, "pages": 255 }, "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2003AcAri.106..255P" } } }