{ "id": "math/0209149", "version": "v3", "published": "2002-09-12T16:22:31.000Z", "updated": "2003-05-23T20:03:56.000Z", "title": "Heegaard Floer homology and alternating knots", "authors": [ "Peter Ozsvath", "Zoltan Szabo" ], "comment": "Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol7/paper6.abs.html", "journal": "Geom. Topol. 7(2003) 225-254", "categories": [ "math.GT", "math.SG" ], "abstract": "In an earlier paper, we introduced a knot invariant for a null-homologous knot K in an oriented three-manifold Y, which is closely related to the Heegaard Floer homology of Y. In this paper we investigate some properties of these knot homology groups for knots in the three-sphere. We give a combinatorial description for the generators of the chain complex and their gradings. With the help of this description, we determine the knot homology for alternating knots, showing that in this special case, it depends only on the signature and the Alexander polynomial of the knot (generalizing a result of Rasmussen for two-bridge knots). Applications include new restrictions on the Alexander polynomial of alternating knots.", "revisions": [ { "version": "v3", "updated": "2003-05-23T20:03:56.000Z" } ], "analyses": { "subjects": [ "57R58", "57M27", "53D40", "57M25" ], "keywords": [ "heegaard floer homology", "alternating knots", "alexander polynomial", "knot homology groups", "chain complex" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......9149O" } } }