{ "id": "math/0204330", "version": "v1", "published": "2002-04-29T15:43:43.000Z", "updated": "2002-04-29T15:43:43.000Z", "title": "Relative K-theory and class field theory for arithmetic surfaces", "authors": [ "Alexander Schmidt" ], "comment": "32 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "In this paper we extend the unramified class field theory for arithmetic surfaces of K. Kato and S. Saito to the relative case. Let X be a regular proper arithmetic surface and let Y be the support of divisor on X. Let CH_0(X,Y) denote the relative Chow group of zero cycles and let \\tilde \\pi_1^t(X,Y)^ {ab} denote the abelianized modified tame fundamental group of (X,Y) (which classifies finite etale abelian covings of X-Y which are tamely ramified along Y and in which every real point splits completely). THEOREM: There exists a natural reciprocity isomorphism rec: CH_0(X,Y) --> \\tilde \\pi_1^t(X,Y)^{ab}. Both groups are finite.", "revisions": [ { "version": "v1", "updated": "2002-04-29T15:43:43.000Z" } ], "analyses": { "subjects": [ "19F05", "11R37" ], "keywords": [ "class field theory", "relative k-theory", "modified tame fundamental group", "classifies finite etale abelian covings", "natural reciprocity isomorphism rec" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......4330S" } } }