{ "id": "math/0111087", "version": "v2", "published": "2001-11-07T20:25:37.000Z", "updated": "2002-09-06T21:39:02.000Z", "title": "On asymptotic dimension of groups acting on trees", "authors": [ "G. Bell", "A. Dranishnikov" ], "comment": "12 pages", "categories": [ "math.GR" ], "abstract": "We prove the following theorem: Let $\\pi$ be the fundamental group of a finite graph of groups with finitely generated vertex groups $G_v$ having asdim $G_v\\le n$ for all vertices $v$. Then asdim$\\pi\\le n+1$. This gives the best possible estimate for the asymptotic dimension of an HNN extension and the amalgamated product.", "revisions": [ { "version": "v2", "updated": "2002-09-06T21:39:02.000Z" } ], "analyses": { "subjects": [ "20H15", "20E34", "20F69" ], "keywords": [ "asymptotic dimension", "groups acting", "hnn extension", "fundamental group", "finite graph" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math.....11087B" } } }