{ "id": "math/0110262", "version": "v1", "published": "2001-10-24T05:31:31.000Z", "updated": "2001-10-24T05:31:31.000Z", "title": "On the group orders of elliptic curves over finite fields", "authors": [ "Everett W. Howe" ], "comment": "18 pages, LaTeX. This is a preprint version from 1992", "journal": "Compositio Math. 85 (1993) 229--247", "categories": [ "math.NT", "math.AG" ], "abstract": "Given a prime power q, for every pair of positive integers m and n with m dividing the GCD of n and q-1, we construct a modular curve over F_q that parametrizes elliptic curves over F_q along with F_q-defined points P and Q of order m and n, respectively, with P and (n/m)Q having a given Weil pairing. Using these curves, we estimate the number of elliptic curves over F_q that have a given integer N dividing the number of their F_q-defined points.", "revisions": [ { "version": "v1", "updated": "2001-10-24T05:31:31.000Z" } ], "analyses": { "subjects": [ "11G20", "14G15", "14H52" ], "keywords": [ "finite fields", "group orders", "parametrizes elliptic curves", "prime power", "modular curve" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math.....10262H" } } }