{ "id": "math/0005038", "version": "v1", "published": "2000-05-04T03:10:42.000Z", "updated": "2000-05-04T03:10:42.000Z", "title": "Braid Groups are Linear", "authors": [ "Stephen J. Bigelow" ], "comment": "13 pages, 3 figures", "categories": [ "math.GR", "math.GT" ], "abstract": "The braid groups B_n can be defined as the mapping class group of the n-punctured disc. The Lawrence-Krammer representation of the braid group B_n is the induced action on a certain twisted second homology of the space of unordered pairs of points in the n-punctured disc. Recently, Daan Krammer showed that this is a faithful representation in the case n=4. In this paper, we show that it is faithful for all n.", "revisions": [ { "version": "v1", "updated": "2000-05-04T03:10:42.000Z" } ], "analyses": { "subjects": [ "20F36", "57M07", "20C15" ], "keywords": [ "braid group", "n-punctured disc", "mapping class group", "daan krammer", "twisted second homology" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......5038B" } } }