{ "id": "math/0003219", "version": "v1", "published": "2000-03-30T19:30:10.000Z", "updated": "2000-03-30T19:30:10.000Z", "title": "Cohomology of congruence subgroups of SL(4,Z)", "authors": [ "Avner Ash", "Paul E. Gunnells", "Mark McConnell" ], "comment": "29 pp", "categories": [ "math.NT" ], "abstract": "Let $N>1$ be an integer, and let $\\Gamma = \\Gamma_0 (N) \\subset \\SL_4 (\\Z)$ be the subgroup of matrices with bottom row congruent to $(0,0,0,*)\\mod N$. We compute $H^5 (\\Gamma; \\C) $ for a range of $N$, and compute the action of some Hecke operators on many of these groups. We relate the classes we find to classes coming from the boundary of the Borel-Serre compactification, to Eisenstein series, and to classical holomorphic modular forms of weights 2 and 4.", "revisions": [ { "version": "v1", "updated": "2000-03-30T19:30:10.000Z" } ], "analyses": { "subjects": [ "11F75" ], "keywords": [ "congruence subgroups", "cohomology", "classical holomorphic modular forms", "row congruent", "eisenstein series" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000math......3219A" } } }