{ "id": "math-ph/0412058", "version": "v3", "published": "2004-12-16T14:17:47.000Z", "updated": "2005-03-24T16:59:06.000Z", "title": "Quantum Variance and Ergodicity for the baker's map", "authors": [ "Mirko Degli Esposti", "Stéphane Nonnenmacher", "Brian Winn" ], "journal": "Communications in Mathematical Physics 263, Number 2 (2006) 325 - 352", "doi": "10.1007/s00220-005-1397-3", "categories": [ "math-ph", "math.MP" ], "abstract": "We prove a Egorov theorem, or quantum-classical correspondence, for the quantised baker's map, valid up to the Ehrenfest time. This yields a logarithmic upper bound for the decay of the quantum variance, and, as a corollary, a quantum ergodic theorem for this map.", "revisions": [ { "version": "v3", "updated": "2005-03-24T16:59:06.000Z" } ], "analyses": { "subjects": [ "05.45.Mt" ], "keywords": [ "quantum variance", "ergodicity", "quantum ergodic theorem", "logarithmic upper bound", "quantised bakers map" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }