{ "id": "math-ph/0402022", "version": "v1", "published": "2004-02-10T08:01:31.000Z", "updated": "2004-02-10T08:01:31.000Z", "title": "Lower limit in semiclassical form for the number of bound states in a central potential", "authors": [ "Fabian Brau", "Francesco Calogero" ], "comment": "9 pages", "journal": "Phys. Lett. A321, 225 (2004)", "doi": "10.1016/j.physleta.2003.12.034", "categories": [ "math-ph", "math.MP", "quant-ph" ], "abstract": "We identify a class of potentials for which the semiclassical estimate $N^{\\text{(semi)}}=\\frac{1}{\\pi}\\int_0^\\infty dr\\sqrt{-V(r)\\theta[-V(r)]}$ of the number $N$ of (S-wave) bound states provides a (rigorous) lower limit: $N\\ge {{N^{\\text{(semi)}}}}$, where the double braces denote the integer part. Higher partial waves can be included via the standard replacement of the potential $V(r)$ with the effective $\\ell$-wave potential $V_\\ell^{\\text{(eff)}}(r)=V(r)+\\frac{\\ell(\\ell+1)}{r^2}$. An analogous upper limit is also provided for a different class of potentials, which is however quite severely restricted.", "revisions": [ { "version": "v1", "updated": "2004-02-10T08:01:31.000Z" } ], "analyses": { "keywords": [ "bound states", "lower limit", "central potential", "semiclassical form", "higher partial waves" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }