{ "id": "hep-th/9607103", "version": "v1", "published": "1996-07-12T11:45:08.000Z", "updated": "1996-07-12T11:45:08.000Z", "title": "A Z_3-graded generalization of supermatrices", "authors": [ "Bertrand Le Roy" ], "journal": "J.Math.Phys. 37 (1996) 474-483", "doi": "10.1063/1.531688", "categories": [ "hep-th" ], "abstract": "We introduce Z_3-graded objects which are the generalization of the more familiar Z_2-graded objects that are used in supersymmetric theories and in many models of non-commutative geometry. First, we introduce the Z_3-graded Grassmann algebra, and we use this object to construct the Z_3-matrices, which are the generalizations of the supermatrices. Then, we generalize the concepts of supertrace and superdeterminant.", "revisions": [ { "version": "v1", "updated": "1996-07-12T11:45:08.000Z" } ], "analyses": { "keywords": [ "generalization", "supermatrices", "supersymmetric theories", "grassmann algebra" ], "tags": [ "journal article" ], "publication": { "publisher": "AIP", "journal": "J. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 420691 } } }