{ "id": "hep-th/9605102", "version": "v3", "published": "1996-05-15T05:30:26.000Z", "updated": "1996-05-20T01:17:08.000Z", "title": "An explicit construction of Wakimoto realizations of current algebras", "authors": [ "Jan de Boer", "Laszlo Feher" ], "comment": "13 pages, LaTeX; a typo corrected in (5.5-6), refs and a remark added", "journal": "Mod.Phys.Lett. A11 (1996) 1999-2012", "doi": "10.1142/S0217732396001995", "categories": [ "hep-th", "math.QA", "q-alg" ], "abstract": "It is known from a work of Feigin and Frenkel that a Wakimoto type, generalized free field realization of the current algebra $\\widehat{\\cal G}_k$ can be associated with each parabolic subalgebra ${\\cal P}=({\\cal G}_0+{\\cal G}_+)$ of the Lie algebra ${\\cal G}$, where in the standard case ${\\cal G}_0$ is the Cartan and ${\\cal P}$ is the Borel subalgebra. In this letter we obtain an explicit formula for the Wakimoto realization in the general case. Using Hamiltonian reduction of the WZNW model, we first derive a Poisson bracket realization of the ${\\cal G}$-valued current in terms of symplectic bosons belonging to ${\\cal G}_+$ and a current belonging to ${\\cal G}_0$. We then quantize the formula by determining the correct normal ordering. We also show that the affine-Sugawara stress-energy tensor takes the expected quadratic form in the constituents.", "revisions": [ { "version": "v3", "updated": "1996-05-20T01:17:08.000Z" } ], "analyses": { "keywords": [ "current algebra", "wakimoto realization", "explicit construction", "generalized free field realization", "poisson bracket realization" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "inspire": 418585 } } }