{ "id": "hep-th/9601048", "version": "v1", "published": "1996-01-10T22:04:14.000Z", "updated": "1996-01-10T22:04:14.000Z", "title": "Temperature Expansions for Magnetic Systems", "authors": [ "Daniel Cangemi", "Gerald Dunne" ], "comment": "25 pages, RevTeX", "journal": "Annals Phys. 249 (1996) 582-602", "doi": "10.1006/aphy.1996.0083", "categories": [ "hep-th" ], "abstract": "We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on $2+1$ and $3+1$ dimensions. We concentrate on the high temperature limit, but we also discuss the $T=0$ limit with nonzero chemical potential.", "revisions": [ { "version": "v1", "updated": "1996-01-10T22:04:14.000Z" } ], "analyses": { "keywords": [ "magnetic systems", "nonzero chemical potential", "derive finite temperature expansions", "relativistic fermion systems", "background magnetic fields" ], "tags": [ "journal article" ], "note": { "typesetting": "RevTeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "inspire": 415182 } } }