{ "id": "hep-th/9405138", "version": "v2", "published": "1994-05-21T16:43:58.000Z", "updated": "1994-05-22T16:23:37.000Z", "title": "Solutions to the Quantum Yang-Baxter Equation with Extra Non-Additive Parameters", "authors": [ "Anthony J. Bracken", "Gustav W. Delius", "Mark D. Gould", "Yao-Zhong Zhang" ], "comment": "13 pages", "journal": "J.Phys. A27 (1994) 6551-6562", "doi": "10.1088/0305-4470/27/19/025", "categories": [ "hep-th", "math.QA" ], "abstract": "We present a systematic technique to construct solutions to the Yang-Baxter equation which depend not only on a spectral parameter but in addition on further continuous parameters. These extra parameters enter the Yang-Baxter equation in a similar way to the spectral parameter but in a non-additive form. We exploit the fact that quantum non-compact algebras such as $U_q(su(1,1))$ and type-I quantum superalgebras such as $U_q(gl(1|1))$ and $U_q(gl(2|1))$ are known to admit non-trivial one-parameter families of infinite-dimensional and finite dimensional irreps, respectively, even for generic $q$. We develop a technique for constructing the corresponding spectral-dependent R-matrices. As examples we work out the the $R$-matrices for the three quantum algebras mentioned above in certain representations.", "revisions": [ { "version": "v2", "updated": "1994-05-22T16:23:37.000Z" } ], "analyses": { "keywords": [ "quantum yang-baxter equation", "extra non-additive parameters", "spectral parameter", "admit non-trivial one-parameter families", "quantum non-compact algebras" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "inspire": 38068 } } }