{ "id": "hep-th/9312004", "version": "v1", "published": "1993-12-01T16:52:36.000Z", "updated": "1993-12-01T16:52:36.000Z", "title": "Symplectic structure of the moduli space of flat connections on a Riemann surface", "authors": [ "A. Yu. Alekseev", "A. Z. Malkin" ], "comment": "20 pages", "journal": "Commun.Math.Phys.169:99-120,1995", "doi": "10.1007/BF02101598", "categories": [ "hep-th", "math.DG" ], "abstract": "We consider canonical symplectic structure on the moduli space of flat ${\\g}$-connections on a Riemann surface of genus $g$ with $n$ marked points. For ${\\g}$ being a semisimple Lie algebra we obtain an explicit efficient formula for this symplectic form and prove that it may be represented as a sum of $n$ copies of Kirillov symplectic form on the orbit of dressing transformations in the Poisson-Lie group $G^{*}$ and $g$ copies of the symplectic structure on the Heisenberg double of the Poisson-Lie group $G$ (the pair ($G,G^{*}$) corresponds to the Lie algebra ${\\g}$).", "revisions": [ { "version": "v1", "updated": "1993-12-01T16:52:36.000Z" } ], "analyses": { "keywords": [ "riemann surface", "moduli space", "flat connections", "poisson-lie group", "semisimple lie algebra" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Commun. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "inspire": 360704 } } }